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THE THERMAL EXPANSION OF NaCl AT HIGH PRESSURES AND TEMPERATURES

By Harry Hughes
ABSTRACT

The thermal expansion of NaCl at high pressures and tempersatures,
is estimated by extrapolating high temperature compressibility data
to high pressures using finite strain theory. The thermal expansion
is apparently negative at pressures over 50,000 bars at 300°C and

at higher pressures at other temperatures.
INTRODUCTION

Generally a substance becomes more compressible as its temperature
is raised. If two equal masses of material at temperatures T; and Tp
(T, > Tp) and volumes Vi and Vp (V] > Vp due to thermal expansion) then,
because of the greater compressibility at the higher temperature, at
sufficient pressure (P > P', fig. 1) the additional compression is
greater than the initially greater volume and the thermal expansion at
these pressures is thus negative.

Experimental data on halite (NaCl) are more extensive than on most
other minerals so that we can estimate under what conditions this effect

occurs in salt.
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Figure 1. Effect of T and P

on V (diagrammatic)
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CALCULATION

At low temperatures and moderate pressures the thermal expansion
of salt has been measured directly by Bridgman (1940). From his
measurements of compression at -80°C and 20°C (reproduced in table 1)
it can be seen that the thermal expansion is reduced by a factor 2
at 50,000 bars pressure. Our problem is to extrapolate these results
tp higher pressures and temperatures.

We use the relation

a 1 B (1)
=1 - S —
L=o FPr l;BT o or ]pdo
derived by Birch (1939) by integrating the fundamental relation
50‘) OBy (both e i 2 (2)
= qualling 1 2V )
(55 v \T /o vV  OTOP

where @ is the thermal expansion and Bp the isothermal compressibility.
Now the term in brackets in equation 1 is known from Bridgman's
measurements at low temperatures, and at high temperatures can be deter-
mined from measurements of the adiabatic compressibility (HMnter and
Seigel, 1942) by use of the thermodynamic relation By = Bg (1 + T a 7),
7y being Gruneisen's'constant. The data are shown in table 2. The other
unknown in equation 1, Bp, can be estimated by using the relation
Bp = o/p = (142£)5/2 (147 - 2 ¢ £ (249¢) (3)
where f is a measure of the strain given by Vo/V = (l+-2f)3/2 and ¢ is
a small adjustable parameter. The theoretical and experimental support

for the above equation is discussed extensively by Birch (1952).
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Figure 2 shows equation 3 graphically teking & as -0.3 (see below)
and the resulting value of u/qc obtained from equation 1 taking the
term in brackets as 5. Exaet values for this term at different
temperatures are shown in table 2 and the appropriate adjustment to the
figure is readily made. To find the thermal expansion at any tempera-
ture and pressure, the strain produced by that pressure is first found

from the lower curve (drawn from the relation

/

PR, =3f (142£)”% (1-2 ¢ 1) (4)

a consequence of equation 3), and the value of a/bbat that strain is

read for the values of Bp =0 éndz:'l éJ%;] at the particular
af T Jp=o

temperature. The resulting estimates of the thermal expansion are

shown in table 3.

The accuracy of these values can be seen from equation 2 to
depend on the estimate of the compressibility over the temperature-
pressure field. The goodness of fit of the compressibility to equation
3 can be expressed in terms of the parameter ¢ . Lazurus (1949)
obtains ~0.3 for this parameter, whereas Bridgman's measurements
are best fitted by a value of ~0.6 (Birch, 1954). Most substances
have f very nearly zero (Birch, 1952), and all the determinations
have been made near room temperature. An uncertainty of 0.3 in ¢
does not appreciably change the estimated compressibility at small

at strains of 20 percent
strains and affects it only +7.7 percenta(equation 3). This un-
certainty also affects the strain produced by a given pressure

(equation 4) but its principal effect is likely to be in the
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Figure 2. Compressibility, P, and thermal
expansion, a, of NaCl as a function of compression. # -
(x = measurements of a between -80°C and 20°C,

¢t taken as - 0.3)
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Table 2.--Properties of NaCl at One Atmosphere (Hunter and Siegel, 1942;

Walther and others 1937)

B
13 6 13 1 1
T 10 B, 10% , 108, C’BT =
(%K) (cm2(dy;r_1e) (dqg'l) (cmZZdy_ne)
300 Ll.4 120 1.56 43.7
5.17
400 43.1 128 1.57 46.6 ~
5.93
500 45.6 136 1.56 50.4
: 8.04
600 50.1 143 1.46 56.4
7.48
700 54.8 152 1.40 63.0
6.72
800 59.3 165 1.38 70.1
5.65
200 63.1 180 1.39 77.3
5.27
1000 65.7 201 1.50 85.5

Table 3.-~Estimated Values of the Thermal Expansion of NaCl (}:106)0(3"'1
Estimated value for indicated pressure (P), in bars

(%) 0o 1% z10* 4104 620 g0t 10°
350 124 102 84 57 4 30 20
450 132 102 81 49 26 16 0
550 140 92 57 13 15 -38
650 ug 9 62 15 -5 -36
750 159 105 67 24, -6 24
850 173 119 87 42 16
950 191 . 132 % 52 27
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value of the derivative BBT/BT if ¢ changes with temperature.
It can be seen from the rapid increase of BT with temperature
(table 2) that an increase in t of only about 0.5 in a 100°C tempera-
ture interval is sufficient to prevent a positive value for aﬁT/BT
(and thus a negative value for Oa/0P) but even this result holds
only at the largest strains. As such large changes in ¢ are unlikely
we conclude that the trend shown in table 3 is substantially correct.
It might appear from equation 1 that only the value of BBT/BT
at zero pressure, where the value of ¢ is unimportant, determines the
estimate of thermal expansion. However, this equation is valid only for

¢ =0 to allow for uncertainty in ¢ , the more fundamental eéquation 2

has to be considered as is done above.

SUMMARY AND APPLICATION

The estimates in Table 3 indicate that the thermal expansion of
salt becomes negative first at temperatures of about 300°C (twice the
Debye temperature) and at pressures above about 50,000 bars (or at
greater compressions than about 17 percent). Higher pressures and
compressions are needed at both higher and lower temperatures.

A pressure of 50,000 bars, corresponding to a depth of 100-200 kms.
in the earth is far greater than that to which natural salt deposits
are subjected but is small compared to the pressures deeper in the
earth's mantle. A negative thermal expansion at high pressure may
occur in other minerals for which no data are available. However,
this effect is not likely to be geologically important. The mantle
is assumed to have solidified from the bottom upwards, and this indicates
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that the thermal expansion there was positive (contrast the freezing

of a lakefrom the top downwards); this sbsence of a negative thermal
expansion may be a consequence of the high temperatures in the mantle.

The cooling of the earth, now most rapid at a depth of geveral hundred
kilometers, seems to be associated with contractions leading to mountain
building, so here again the geological evidence favors & normal (positive)

thermal expansion.
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